首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1275篇
  免费   42篇
  国内免费   8篇
测绘学   61篇
大气科学   100篇
地球物理   269篇
地质学   411篇
海洋学   90篇
天文学   246篇
综合类   5篇
自然地理   143篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   29篇
  2017年   29篇
  2016年   31篇
  2015年   19篇
  2014年   24篇
  2013年   74篇
  2012年   47篇
  2011年   50篇
  2010年   48篇
  2009年   59篇
  2008年   59篇
  2007年   56篇
  2006年   41篇
  2005年   42篇
  2004年   34篇
  2003年   38篇
  2002年   37篇
  2001年   23篇
  2000年   41篇
  1999年   22篇
  1998年   22篇
  1997年   20篇
  1996年   21篇
  1995年   21篇
  1994年   13篇
  1993年   21篇
  1992年   18篇
  1991年   14篇
  1990年   23篇
  1989年   15篇
  1988年   18篇
  1987年   17篇
  1986年   12篇
  1985年   14篇
  1984年   22篇
  1983年   25篇
  1982年   18篇
  1981年   14篇
  1980年   15篇
  1977年   9篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
  1973年   9篇
  1972年   19篇
  1971年   12篇
  1969年   7篇
排序方式: 共有1325条查询结果,搜索用时 16 毫秒
1.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   
2.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
We describe and compare two methods of short-exposure, high-definition ground-based imaging of the planet Mercury. Two teams have recorded images of Mercury on different dates, from different locations, and with different observational and data reduction techniques. Both groups have achieved spatial resolutions of <250 km, and the same albedo features and contrast levels appear where the two datasets overlap (longitudes 270–360°). Dark albedo regions appear as mare and correlate well with smooth terrain radar signatures. Bright albedo features agree optically, but less well with radar data. Such confirmations of state-of-the-art optical techniques introduce a new era of ground-based exploration of Mercury's surface and its atmosphere. They offer opportunities for synergistic, cooperative observations before and during the upcoming Messenger and BepiColombo missions to Mercury.  相似文献   
4.
5.
6.
In many astrophysical problems, the study of the stability of an atmosphere in the presence of a magnetic field is of importance. In most cases the MHD instabilities of atmospheres are studied by energy principle of Bernsteinet al. (1958). In this paper, a general method for studying the stability of a system subject to MHD equations of conditions has been proposed. This is based on the local potential concept put forward by Glansdorff and Prigogine (1964). The scheme for securing stability criteria has been demonstrated in two particular cases.  相似文献   
7.
8.
9.
10.
The Mangala Valles system is an ∼ ∼900 km fluvially carved channel system located southwest of the Tharsis rise and is unique among the martian outflow channels in that it heads at a linear fracture within the crust as opposed to a collapsed region of chaos as is the case with the circum-Chryse channels. Mangala Valles is confined within a broad, north–south trending depression, and begins as a single valley measuring up to 350 km wide that extends northward from a Memnonia Fossae graben, across the southern highlands toward the northern lowlands. Approximately 600 km downstream, this single valley branches into multiple channels, which ultimately lose their expression at the dichotomy boundary. Previous investigations of Mangala Vallis suggested that many of the units mapped interior to the valley were depositional, related to flooding, and that a minimum of two distinct periods of flooding separated by tens to hundreds of millions of years were required to explain the observed geology. We use infrared and visible images from the THermal EMission Imaging System (THEMIS), and topographic data from the Mars Orbiting Laser Altimeter (MOLA), to investigate the nature of the units mapped within Mangala Vallis. We find that the geomorphology of the units, as well as their topographic and geographic distribution, are consistent with most of them originating from a single assemblage of volcanic flow deposits, once continuous with volcanic flows to the south of the Memnonia Fossae source graben. These flows resurfaced the broad, north–south trending depression into which Mangala Vallis formed prior to any fluvial activity. Later flooding scoured and eroded this volcanic assemblage north of the Mangala source graben, resulting in the present distribution of the units within Mangala Vallis. Additionally, our observations suggest that a single period of catastrophic flooding, rather than multiple periods separated by tens to hundreds of millions of years, is consistent with and can plausibly explain the interior geology of Mangala Vallis. Further, we present a new scenario for the source and delivery of water to the Mangala source graben that models flow of groundwater through a sub-cryosphere aquifer and up a fracture that cracks the cryosphere and taps this aquifer. The results of our model indicate that the source graben, locally enlarged to a trough near the head region of Mangala, would have required less than several days to fill up prior to any spill-over of water to the north. Through estimates of the volume of material missing from Mangala (13,000–20,000 km3), and calculation of mean discharge rates through the channel system (∼ ∼5 × 106 m3 s−1), we estimate that the total duration of fluvial activity through the Mangala Valles was 1–3 months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号